April 2017 night sky guide and sky chart

To help you learn about the southern night sky, Sydney Observatory provides a guide and a sky map each month. This month’s guide is presented by Dr Andrew Jacob, Sydney Observatory’s Curator of Astronomy.
This month, learn how to find the autumn constellations. Tour the Milky Way galaxy from the Southern Cross to Orion in the north and discover the brightest stars in the sky. Andrew also tells us how to find the planets Jupiter and Mars in the evening sky. And take on the challenge of spotting late night meteors from the pi-Puppids meteor shower.

See the Sky Chart
We provide an April 2017 night sky map (PDF) which shows the stars, constellations and planets visible in the night sky from anywhere in Australia. To view PDF star charts you will need to download and install Adobe Acrobat Reader if it’s not on your computer already.

Read the Guide

Hello, and welcome to the night sky for April 2017.

This is Andrew Jacob, and I’m the Curator at Sydney Observatory, part of Sydney’s Museum of Applied Arts & Sciences. Come on a tour of the night sky with me. Learn what stars and constellations are visible, where to find the planets and what special events are happening overhead this month.

To make the most of this guide, you should begin by gathering a few items together. Firstly, you will need a star map. You can download a free one from the link above. The star map will show you what stars and constellations are visible in the night sky this month and I’ll be referring to that star map in this guide.

As well as the star map, a torch with a red LED, or one covered with a few layers of red cellophane, will be very useful. The red light will allow your eyes to remain dark adapted during the evening, yet still allow you to read your star map.

Finally, a pair of binoculars or a telescope can be very handy. They’re not essential for following this guide but if you do have them they will help you see a few of the fainter objects more easily and in more detail.

Now that we have our equipment together we need to know a few directions and also how to measure angles across the sky.

You can find the cardinal directions – North, South, East and West – from a compass app on your mobile device, or just remember, of course, that the Sun rises in the east and sets in the west. And if the Sun is setting at your right shoulder, then you must be facing south. Another useful direction to remember is the zenith. This is the point directly overhead.

To find your way around the night sky, it helps to know how to measure angles across it. It makes no sense to say, for instance, that one star is “2 centimeters” to the left of another or that a shooting star left a trail “half a meter” long! Instead we should use angular measurements. The distance around the horizon, from North, through East, South, West and back to North is 360 degrees. And from the horizon vertically upwards to the zenith overhead is 90 degrees.

But how do we measure smaller angles? Well, despite the great variety of human form our fingers, hands and arms are all pretty much in the same proportions. If you hold your hand out at arm’s length and stretch out your little finger and thumb to make a hand span, they span an angle across the sky of about 20 degrees. A fist held out at arm’s length makes an angle across the sky of about 10 degrees. And a finger held up at arm’s length is about 1 degree, or twice the width of the Moon or the Sun. I’ll be using these measurements during this guide. So, a hand span at arm’s length is 20 degrees, a fist is about 10 degrees, and a single finger is about one degree across the sky.

One final point to note before we get started. The Earth rotates and so the sky changes hour by hour. My descriptions of the constellations and stars in this guide fit the time of one to two hours after sunset.

This month we return to the long nights of autumn following the end of daylight saving. The nights are long but not too cold for good observing. But get some warm clothes on and a beanie and grab a blanket to lie on. Just as we found in January the best constellations are high overhead. Lie down with your feet facing South-West, just to the left of where the Sun recently set. Look straight up towards the zenith. With your feet pointing south-west most of the constellations above will appear upright, rather than upside down as they often do from the southern hemisphere!

If you are in a dark location, and there is no Moon up, you will see the Milky Way, the edge-on view of our own galaxy, stretching from the south-eastern horizon on your left, passing overhead through or close to the zenith, and reaching the north-western horizon on your right. If you are near a city or large town and light pollution affects your view the Milky Way won’t be easily visible but you will still see a band of bright stars stretching across this part of the sky, from south-east to north-west. On your star map the Milky Way is indicated by the dot-dash line spanning the width of the map.

You will need to align your star map with real sky. Simply hold your map up in front of you and tilt it to the right so that the label “SW” (for southwest, of course) is at the bottom, lined up with your feet! Your map is now aligned with the stars overhead and is ready to assist you with the next part of this guide.

We begin with the Pointer Stars on your far-left. On your star map these are clearly labelled near the “SE”, or south-east, horizon.

These two bright stars appear almost side-by-side. The brighter of the two pointers, the one on the left, is called Alpha Centauri and it is the third brightest star in the night sky. The right-hand Pointer is Beta Centauri and it is the 10th brightest star. Later we will search for all ten brightest stars in the night sky.

Alpha Centauri is a fascinating star. Although it looks like a single star to your eye, it is in fact a group of three, with two of them too close together for your eye to separate and the third to faint to detect. Through a medium-sized telescope, two of the stars are visible. Both are very similar in size and colour to our Sun. These two stars orbit about each other once every 80 years or so. The third star is called Proxima Centauri, and it is the closest star to the Earth, after our Sun.

Unfortunately, Proxima Centauri is a faint red dwarf star and is easily visible only with large telescopes. It orbits the first two stars. Proxima Centauri is about 4.2 light‑years away, or approximately 42 million million kilometers.

Recently a planet was detected in orbit around Proxima Centauri. This makes it the closest planet beyond the eight in our own solar system – a very tempting target to send the first interstellar spacecraft to! But that is for the future.

A moment ago I mentioned light‑years. Let me explain what a light‑year is. Light travels incredibly fast, about 300,000 kilometres every second. This means light could travel approximately seven and a half times around the Earth in just one second.

The distances in our Milky Way galaxy and the universe are vast beyond imagining. Our Sun is 150 million kilometres from the Earth. And it takes light about eight and a half minutes to reach us from the Sun. Our Moon is almost 400 thousand kilometres from the Earth and it takes light from the Moon about one and a quarter seconds to reach us. Proxima Centauri, our closest star, is about 42 million million kilometres away from us. Its light takes about 4.2 years to reach us. So we can say that Proxima Centauri is about 4.2 light years away from us.

It also means that we see the star Proxima Centauri as it was 4.2 years ago. We’re looking into the past to see everything in the universe. A light year is simply a distance, and one light year is about 10 million million kilometres long.

Now, let’s get back to the night sky. We’ll return to Alpha Centauri. If you draw an imaginary line from Alpha Centauri across to the right through Beta Centauri, and onward, you will reach the Southern Cross. I hope you recognize it because it looks just like it does on the Australian flag.

The Southern Cross is the best known constellation in the southern skies. It is formally known as Crux, its Latin name, but we have also labelled it Southern Cross on your star map.

The Southern Cross is very useful, as it can help us find the direction of true south. Hold up your arm, and measure the length of the long arm of the cross using two fingers (your pointer and little fingers), from the top star to the bottom one. Now, measure this distance three and a half times downwards starting from the bottom (brightest) star of the Cross. This description works if you are lying down with your feet facing south-west. And it may help to close one eye as you measure!

The point you end up at is called the South Celestial Pole, the south pole of the sky. It’s the point in the sky about which all the stars are rotating, but there are no bright stars in this area. It’s just an imaginary point in the sky. It is labelled on your star map.

Now, if you draw a line from the South Celestial Pole to the nearest point on the horizon, you have found the direction of south on the ground. From now on you will never need an app or compass to find south.

Returning to the Cross you will notice, if you are in a dark site and the Moon has set, a dark patch below the Cross (or to its lower-left side if it was upright). This is the Coal Sack, a dark cloud of hydrogen gas and, mostly, carbon dust blocking light from more distant stars. In fact, you will notice many of these dark patches spread here and there along the Milky Way. They hold the raw material for making new stars.

Here is something interesting you can do if you have a camera that allows you to leave the shutter open. If you take a photograph of the sky facing south, including the South Celestial Pole, and leave your camera shutter open for 10 or more minutes, you’ll find beautiful, circular star trails in your photograph. This shows how the stars appear to rotate about the South Celestial Pole. It is however the Earth which is really rotating.

Let’s now turn our attention to the constellation of Orion, the Hunter in the sky, over on your right towards the north-west horizon. With the help of your star map locate the three stars of Orion’s belt – it is labelled. From left to right these are Alnitak, Alnilam and Mintaka. Turning your head to the right you will see, just above these three belt stars, the star Betelgeuse, glowing orange-red or sometimes pale-yellow. It’s not that the star changes colour, more that your perception of the colour changes with the clarity of the atmosphere and your eyes’ adaption to the dark. This enormous star represents Orion’s shoulder. It is a ‘red giant’ star coming to the end of its life, it is 425 light years away and it’s hundreds of times larger than our Sun.

Just below Orion’s belt is the bright star Rigel, one of Orion’s knees. From Betelgeuse to Rigel is just over a full hand span or about 20-degrees across the sky. Rigel is also at a late stage in its life cycle, although not as late as Betelgeuse. It is about 1000 light years away and its surface temperature is about 11,000 degrees Celsius – about twice as hot as our Sun.

Now, if Betelgeuse and Rigel form Orion’s right shoulder and left knee respectively you should now be able to imagine the figure of a man, perhaps with the help of your star map. His head and shoulders are to the right, his body narrows to the three “belt stars” at his waist and his legs stretch out to the left. Between Orion’s legs, hanging from his belt, is Orion’s sword. To your eye this appears as a pair of (or maybe three to some of you) fuzzy stars. Through binoculars you will see three pairs of stars, plus many more fainter ones, with the middle pair surrounded by a faint hazy “cloud”. This cloud, or nebula, is the Orion Nebula, over 1500 light years away. It is also known to astronomers as “M42”. It is perhaps the most photographed object beyond our solar system and is a large cloud of, mostly, hydrogen gas which is producing new stars. The cloud is 15 light years in diameter and the stars you see embedded within it (with your binoculars) were formed from the collapsing hydrogen gas within the last million years or so.

Orion is a pivotal constellation – its stars are guides pointing to many other interesting stars and constellations.

If we extend the line of Orion’s belt stars one hand span (20-degrees) to the right we come to an orange star amongst a V-shaped pattern of fainter stars. This is Taurus the Bull. The orange star is Aldebaran, the eye of the Bull, and his head is the V-shape. In April Taurus is close to setting in the west and may be difficult to identify.

Returning to Orion’s belt we now follow the line of the belt to the left about one hand span. We reach the brightest star in the sky, Sirius. Its name means “scorching” or “brilliant” and you can see why! Sirius is also called the “Dog Star” because it’s the brightest star in the constellation of Canis Major, the Big Dog. With help from your star map you can identify the shape of the dog, the faithful hunting companion of Orion.

Just above Sirius, a hand span plus four fingers width, is the bright star Procyon in the constellation Canis Minor, the Little Dog. Procyon has a companion star a couple of fingers width to the right. However, this constellation looks nothing at all like a dog. In fact, few constellations clearly resemble their name!

Returning again to Orion, we now use his sword to direct us to our next destination. You might notice that Orion’s sword points directly left (towards the South Celestial Pole across the sky) and right (North). This is very useful to remember when the Southern Cross is low in the sky or hidden by cloud.

Following the direction of Orion’s sword towards the South, or left, about three handspans brings us underneath Canis Major and to a point above your feet and we reach another bright, white star. If you have a good eye for colour it will look pale-golden colour. This is Canopus (it’s labelled on your star map), 205 light years away and the second brightest star in the night sky after Sirius. Canopus is one of the celestial navigation stars that have been used by ships navigators for centuries. Appropriately it’s the brightest star in the constellation Carina, the Keel of a ship. On your star map you will see the other parts of the ship: the sails, Vela, the rear (or poop) deck, Puppis, and the ship’s compass, Pyxis. There is even a Flying fish, Volans, in this watery scene overhead! This ship – Carina, Vela, Puppis & Pyxis – used to be one huge constellation called Argo Navis, the Ship of the Argonauts. The Argonauts were mythological Greek heroes who accompanied the hero Jason on his quest to find the Golden Fleece. This is not an easy ship to identify in the sky so this is my observing challenge for April. Can you identify the whole of the ship – Keel, Sails, Rear Deck, Compass and all in the sky?

More easily identified is the False Cross. This is an “asterism” or star-shape not one of the 88 formal constellations. It lies on the border of Carina and Vela taking in stars from both constellations. It is larger and fainter than the real Southern Cross which lies further to the left.

Below the False Cross and Carina you will notice, if you are in a dark site away from city lights and with no Moon in the sky, two cloudy patches. These are the Large Magellanic Cloud (LMC on your map) and Small Magellanic Cloud (SMC). These two “clouds” are companion galaxies to our own Milky Way galaxy. But our galaxy is bullying and harassing these smaller companions, tearing off shreds of hydrogen gas. Their future is uncertain – they may either be absorbed in the distant future by the Milky Way or perhaps just pass on by.

The Small Magellanic Cloud is the lower of the two, if you are still lying down with your feet to the south-west. Just to its right is another bright star. This is Achernar, meaning the River’s end. It is the star at the end of the constellation Eridanus, the River in the sky.

Let’s review what we’ve seen tonight. We begin from the south-east, on your left, and we’ll travel along the Milky Way. First are the Two Pointer stars and then the Southern Cross. Moving northwards, to the right, we pass the False Cross between Vela the Sails and Carina the Keel. Then comes Canopus, the navigation star, and below it the Magellanic Clouds and Achernar. Next along is Canis Major and the brightest star, Sirius, followed by Orion the Hunter with his belt and sword. Then comes Taurus the Bull. What a grand sight!

It’s an even grander sight with binoculars. If you sweep the Milky Way passing all the objects I’ve mentioned tonight you’ll also discover, in between, hazy gaseous nebulae where stars are born, sparkling clusters of young stars and curious star patterns here and there. At first it seems overwhelming but if taken in bite sized chunks, month by month, there’s a lifetime of observing to be done.

But wait there’s more! Most of the brightest stars in the night sky are visible during April nights. Sirius, the Dog Star, is the brightest followed by Canopus, the navigation star. Third brightest is Alpha Centauri, the brighter of the Two Pointers. Next are Arcturus, Vega and Capella none of which is visible on April evenings. Seventh brightest is Rigel, Orion’s knee. Next is Procyon in the Little Dog. Ninth is Achernar at the end of the River Eridanus. Finally, Betelgeuse, Orion’s shoulder, is the tenth brightest star in the night sky. That’s seven of the ten brightest stars all visible at once on autumn evenings

We haven’t yet tried to find Gemini the Twins, or Cancer the Crab, or Leo the Lion in the northern sky. But we have covered a lot already so I shall leave it to you, with your new star-map reading skills, to identify these three Zodiac constellations in the April evening sky. Anyway looking for them would require moving and abandoning the comfy position you are in. Why not stay a while, contemplate the universe, and wait for a meteor or two…

Now, let’s have a look at the special events and highlights for this month.

What are the special events and highlights for April 2017?

Let me note that all the times I am about to mention are in Eastern Australian Standard Time or AEST, as it is properly known, because daylight saving comes to an end on Sunday April 2 at 3am – put your clocks back one hour!

Let’s start with the Moon phases. We begin the month with a First Quarter Moon on Tuesday 4th April at 4:39am. Full Moon occurs on Tuesday 11th at 4:08pm. Last Quarter is on Wednesday 19th at 7:57pm. Finally New Moon is on Wednesday 26th at 10:16pm.

The Moon is the brightest object in the night sky when it is up, no matter what phase it is in. It is well worth observing its changing phases or looking closely at the craters, plains and other features with binoculars or a telescope. But to get the best views of the Milky Way and the constellations it is best to avoid moon-lit hours. If the Moon is between New and Full (i.e. waxing) wait for it to set before observing the Milky Way and stars. If the Moon is between Full and New (waning) observe before it rises. You don’t need a daily list of rise and set times – just watch the Moon for a few days and you will soon learn to predict its behaviour.

What planets are visible in April 2017?

The evening planets to look for this month are Jupiter and Mars.

Mars is hanging on low in the west just after sunset and moving from Aries into Taurus. On April 28 a very thin crescent Moon sits just above and left of Mars.

Jupiter is in the east in Virgo. It is bright and yellow and very obvious in the eastern sky. Use your binoculars to discover its four Galilean moons and watch their dance about the King of the Planets from night to night. On April 7 Earth passes between the Sun and Jupiter, an arrangement we call the opposition of Jupiter. This means Earth is closer than average to Jupiter and makes April the best month this year to observe Jupiter with binoculars or telescopes.

In the morning sky this month we can see Venus, Jupiter and Saturn. Venus shines brightly in the east in Pisces, Saturn is high overhead in Sagittarius and Jupiter is partying on almost till dawn – you will see him close to the western horizon.

What else is happening in April 2017?

There are two meteor showers to look out for in April. Although not the year’s best you may be lucky to see a few bright meteors.

From April 16 to 25 the “Lyrids” are active and at their best on April 23. Look low in the north long after midnight. With the Moon a waning crescent, and therefore fainter, you may spot a few bright meteors. The meteors are particles from the comet C/1861 G1 (Thatcher).

If you don’t want to wait up past midnight try the “pi Puppids”. These are best seen on April 23rd low in the south-west. They radiate from the constellation Puppis (the rear deck of the ship we identified above) and are sometimes bright. These ones originate from the comet 26P/Grigg-Skjellerup. Good luck!

Finally, if you are up early to view Saturn keep in mind that the spacecraft Cassini, presently in orbit about Saturn, begins a series of very close “Grand Finale” orbits. These take the spacecraft between the rings and the planet, something which has never been done before. Look out for some spectacular photos.

And that wraps up the special events for April 2017.


An excellent companion to these guides is the annual “Australasian Sky Guide” book by Dr Nick Lomb. It not only contains detailed monthly sky maps, but is jam packed with astronomical information, including rise and set times for the Sun, Moon, and planets, tide times and a detailed look at our solar system and upcoming astronomical events.

The “Australasian Sky Guide” for 2017 is available now, still for just $16.95, from Sydney Observatory or the Museum of Applied Arts & Sciences (MAAS) store. It’s also available online via the Museum of Applied Arts & Sciences website, for which additional costs apply.

For more astronomical information, why not check the Sydney Observatory website and blogs, and our Facebook and Twitter accounts.

And if you’re in Sydney visit the Observatory in The Rocks area. View the skies through our telescopes (day or night, weather permitting), visit our Space Theatre or the Sydney Planetarium. Tour our exhibition and discover the history of Australian astronomy. But please check our website as not all the activities are free and some require bookings.

This brings to an end this Night Sky guide from Sydney Observatory, and from me – Andrew Jacob. Thank you for listening and I wish you clear skies until next time.

7 responses to “April 2017 night sky guide and sky chart

  • I was looking up Easter evening, to the right of Orion in NY state…Catskill mountain region..I swear I was looking at a bright star or satellite. ..suddenly, next to it. Slight distance…another light simultaneously lit up…looked like someone turned on car headlights. ..then gone, and just the original star I saw was there still…back to original. .what would that be. I swear it was curiously amazing. ..never have I seen that..look at the sky every night…and will forever remember that !!

  • I live on Eyre Peninsula in South Australia and we have some awesome skies at present. At midnight/1am I only see some-what over half of the April 2017 sky map. I admit to being a novice at reading the sky map but I look at the sky most nights (weather permitting) at 12am-1am and some nights it is so clear that the background sky is like a “lit-up” pin cushion with a “light” at every weave, thus no dark spaces in the sky except maybe the dark rift in the Milky Way (MW). So the preamble to my question is: if you take the line of the M W from the false cross to the Southern Cross to the Pointers and continue along the M W (which is towards east-west at that time of night, and the Big Dipper (on the other side of the Cross)is on the western horizon), the M W widens out and the tail of Scorpio cuts into the M W just by the bottom of the tail of the dark rift. Then go towards the N-NNE some maybe 60 degrees is a very bright star/planet and this planet makes a triangle with Antares (in Scorpio) and the Southern Cross (the angle at Antares is not quite 90 degrees). As I cannot find this info on the sky map, my question is: what is the very bright planet? Venus or Jupiter? I am sorry for the length of this reply/question, but just as an aside, is was fascinating to witness back in 2012 and 2013 (time gets by, it could have been 2013 and 2014) the change in orientation of the Earth’s rotational axis with the plane of M W such that prior to January 2013(?) the Southern Cross (SC) traversed the southern skies in an arc, then in January the S C traversed a full circle in the southern skies. This lasted for a month or two and then reverted back to an arc. Then in January 2014 the SC again traversed a full circle in the southern skies and has continued to do so since then. I noticed back then that the Australian Geographic magazine had a picture of the S C and stars tracing an arc across the night sky, then another much later picture of the S C and some stars tracing a circle with the remaining stars tracing an arc. Thank you.

    • Paul, The April star map is designed to work best at about 8pm from any location in Australia. At later times you cold try using a star map from a later month. For your observing around midnight you could use the July star map (just ignore the Moon and planet information!). Form your description (nicely described using constellations, directions and angular measures – thank you) your bright planet must be Jupiter. However, your description of the movement of the Cross may be confused. The Cross always follows a circular path around the South Celestial Pole – this never changes. Any apparent change in path between ‘arc’-like and ‘circle’-like may be due to the presence of the Milky Way? If you ignore the movement of the Milky Way arcing across the sky and just concentrate on the Cross, or even take a star trail photo of the Cross & southern sky, you should see it is always following a circular path around the South Celestial Pole.

      • Thank you Andrew for your info. I still have a couple of questions about the apparent movement of the Southern Cross in relation to our southern horizon and the change in that relationship in 2012-2014, but I will do a bit more research before asking any questions. Again, many thanks.

  • Excellent info!
    I would happily lie on a rug in the yard as a little girl looking into the night sky. We lived on hill in rural nothern NSW and no light pollution! I still star gaze on sleepless nights.
    Thankyou so much

  • I am somewhat disappointed that you NSW residents seem to forget that there is an ADELAIDE SOUTH AUSTRALIA, on this continent. What a great way to teach our children, when you decide to leave this state out of your night sky map information sheet. At least my children know all of the capitals and states of this country! Disappointed.

    • John, Thank you for pointing this out. Of course, we would never forget Adelaide. But somehow it slipped off the map. I’m in the dark about how that happened but we will correct it and post a new map soon.

Leave a Reply

Your email address will not be published. Required fields are marked *